Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Nutrients ; 16(6)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38542737

Oxidative stress is a key contributing factor in neurodegeneration, cognitive ageing, cognitive decline, and diminished cognitive longevity. Issues stemming from oxidative stress both in relation to cognition and other areas, such as inflammation, skin health, eye health, and general recovery, have been shown to benefit greatly from antioxidant use. Astaxanthin is a potent antioxidant, which has been outlined to be beneficial for cognitive function both in vitro and in vivo. Given the aforementioned promising effects, research into astaxanthin with a focus on cognitive function has recently been extended to human tissue and human populations. The present critical review explores the effects of astaxanthin on cognitive function and neurodegeneration within human populations and samples with the aim of deciphering the merit and credibility of the research findings and subsequently their potential as a basis for therapeutic use. Implications, limitations, and areas for future research development are also discussed. Key findings include the positive impacts of astaxanthin in relation to improving cognitive function, facilitating neuroprotection, and slowing neurodegeneration within given contexts.


Antioxidants , Xanthophylls , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Xanthophylls/pharmacology , Xanthophylls/therapeutic use , Oxidative Stress , Cognition
2.
Sports Med Open ; 10(1): 17, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38356036

BACKGROUND: A new commercially available sodium bicarbonate (SB) supplement claims to limit gastrointestinal (GI) discomfort and increase extracellular buffering capacity. To date, no available data exists to substantiate such claims. Therefore, the aim of this study was to measure blood acid-base balance and GI discomfort responses following the ingestion of SB using the novel "Bicarb System" (M-SB). Twelve well-trained male cyclists completed this randomised crossover designed study. Maximal oxygen consumption was determined in visit one, whilst during visits two and three participants ingested 0.3 g∙kg-1 BM SB using M-SB (Maurten, Sweden) or vegetarian capsules (C-SB) in a randomised order. Finger prick capillary blood samples were measured every 30 min for pH, bicarbonate (HCO3-), and electrolytes (potassium, chloride, calcium, and sodium), for 300 min. Visual analogue scales (VAS) were used to assess GI symptoms using the same time intervals. RESULTS: Peak HCO3- was 0.95 mmol∙L-1 greater following M-SB (p = 0.023, g = 0.61), with time to peak HCO3- achieved 38.2 min earlier (117 ± 37 vs. 156 ± 36 min; p = 0.026, r = 0.67) and remained elevated for longer (p = 0.043, g = 0.51). No differences were observed for any electrolytes between the conditions. Aggregated GI discomfort was reduced by 79 AU following M-SB (p < 0.001, g = 1.11), with M-SB reducing stomach cramps, bowel urgency, diarrhoea, belching, and stomach-ache compared to C-SB. CONCLUSIONS: This is the first study to report that M-SB can increase buffering capacity and reduce GI discomfort. This presents a major potential benefit for athletes considering SB as an ergogenic supplement as GI discomfort is almost eliminated. Future research should determine if M-SB is performance enhancing.


The novel 'Bicarb System' (M-SB) reduced, and almost eliminated the gastrointestinal (GI) discomfort compared to vegetarian capsules (C-SB). The changes in acid-base balance following ingestion of M-SB were significantly greater compared to C-SB. It is unkown if this would translate to increased performance benefits, however, and the next step therefore is to determine the performance responses from M-SB. The increase in HCO3 was sustained >5 mmol L−1 HCO3 for longer with M-SB ingestion versus C-SB. This might suggest there is an "ergogenic window", and ingestion timing could therefore be flexible prior to exercise.

3.
Med Sci Sports Exerc ; 55(12): 2299-2307, 2023 12 01.
Article En | MEDLINE | ID: mdl-37535313

PURPOSE: The use of sodium bicarbonate (SB) as a preexercise ergogenic aid has been extensively studied in short-duration high-intensity exercise. Very few studies have considered the effects of SB ingestion before prolonged high-intensity exercise. The aim of the present study was to determine the effects of a 0.3 g·kg -1 body mass dose of SB ingested before the start of a 16.1-km cycling time trial in cyclists. METHOD: Ten trained male cyclists (age, 31.1 ± 9 yr; height, 1.84 ± 0.05 m; body mass, 82.8 ± 8.5 kg; and V̇O 2peak , 60.4 ± 3.1 mL·kg -1 ·min -1 ) completed this study. Participants ingested 0.3 g·kg -1 in gelatine (SB-G) and enteric capsules (SB-E) 1 wk apart to determine individualized time-to-peak alkalosis for each ingestion form. Using a randomized crossover design, participants then performed simulated 16.1-km time trials after ingestion of SB-G, SB-E, or a placebo. RESULTS: There were significant differences in performance between the SB and placebo ingestion strategies ( f = 5.50, P = 0.014, p η2 = 0.38). Performance time was significantly improved by SB ingestion (mean improvement: 34.4 ± 42.6 s ( P = 0.031) and 40.4 ± 45.5 s ( P = 0.020) for SB-G and SB-E, respectively) compared with the placebo. Gastrointestinal symptoms were lower after SB-E compared with SB-G (36.3 ± 4.5 vs 5.6 ± 3.1 AU, P < 0.001, g = 7.09). CONCLUSIONS: This study demonstrates that increased buffering capacity after acute preexercise SB ingestion can improve endurance cycling time-trial performances. The use of SB could be considered for use in 16.1-km cycling time trials, but further work is required to establish these effects after a preexercise meal.


Alkalosis , Sodium Bicarbonate , Adult , Humans , Male , Young Adult , Bicycling , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Eating
4.
Nutrients ; 15(15)2023 Jul 26.
Article En | MEDLINE | ID: mdl-37571244

The aim of this study was to observe the nutritional supplement practices of highly trained swimmers on a national talent pathway, since it is often reported that swimmers engage in widespread supplement use at the elite level. Thus, this study employed a validated supplement intake questionnaire with forty-four swimmers from a high-performance swimming club, which had three distinct talent stages: development (aged 11-14 years, n = 20), age-group (aged 13-17 years, n = 13), and national level (aged ≥ 16 years, n = 11). Ninety-eight percent of the interviewed swimmers reported using at least one supplement, with performance (34%) and recovery (19%) cited as the primary reasons. National swimmers used more total supplements (8.1 ± 3.4 supplements) compared to age-group (4.8 ± 2.0 supplements, p = 0.003, g = 1.17) and development (3.9 ± 1.7 supplements, p < 0.001, g = 1.69) swimmers, mostly because of a greater intake of ergogenic aids (2.4 ± 1.4 supplements vs. age-group: 0.5 ± 0.5 supplements, p < 0.001, g = 1.12; vs. development: 0.1 ± 0.2 supplements, p < 0.001, g = 1.81). Parents/guardians were the primary supplement informants of development swimmers (74%, p < 0.001, V = 0.50), whereas performance nutritionists informed ~50% of supplements used by age-group and national swimmers (p < 0.001, V = 0.51). Based on these results, supplement education and greater focus on basic sport nutrition practices may be required for parents/guardians at the development level. Moreover, further research is needed to support the high number of ergogenic aids used by national swimmers, with the efficacy of these supplements currently equivocal in the applied setting.


Athletes , Swimming , Humans , Dietary Supplements , Nutritional Status , United Kingdom
5.
Eur J Appl Physiol ; 123(6): 1191-1198, 2023 Jun.
Article En | MEDLINE | ID: mdl-36705750

PURPOSE: Sodium bicarbonate (SB) supplementation can improve exercise performance, but few studies consider how effective it is in female athletes. The aim of the study was to establish the effect of individually timed pre-exercise SB ingestion on 2 km rowing time trial (TT) performance in female athletes. METHODS: Eleven female CrossFit® athletes (mean ± SD age, 29 y ± 4 y, body mass, 64.5 kg ± 7.1 kg, height, 1.7 m ± 0.09 m, peak oxygen uptake [VO2peak], 53.8 ± 5.7 mL·kg-1∙min-1). An initial trial identified individual time-to-peak [HCO3-] following enteric-coated 0.3 g·kg-1 BM SB ingestion. Participants then completed a 2 km TT familiarisation followed by a placebo (PLA) or SB trial, using a randomised cross-over design. RESULTS: The ingestion of SB improved rowing performance (514.3 ± 44.6 s) compared to the PLA (529.9 ± 45.4 s) and FAM trials (522.2 ± 43.1 s) (p = 0.001, pη2 = 0.53) which represents a 2.24% improvement compared to the PLA. Individual time-to-peak alkalosis occurred 102.3 ± 22.1 min after ingestion (range 75-150 min) and resulted in increased blood [HCO3-] of 5.5 ± 1.5 mmol⋅L-1 (range = 3.8-7.9 mmol⋅L-1). The change in blood [HCO3-] was significantly correlated with the performance improvement between PLA and SB trials (r = 0.68, p = 0.020). CONCLUSIONS: Ingesting a 0.3 g·kg-1 BM dose of enteric-coated SB improves 2 km rowing performance in female athletes. The improvement is directly related to the extracellular buffering capacity even when blood [HCO3-] does not change ≥ 5.0 mmol⋅L-1.


Athletic Performance , Water Sports , Humans , Female , Adult , Sodium Bicarbonate/pharmacology , Athletes , Cross-Over Studies , Double-Blind Method , Dietary Supplements , Polyesters
6.
PLoS One ; 17(4): e0266238, 2022.
Article En | MEDLINE | ID: mdl-35381043

Strict lockdown measures were introduced in response to the COVID-19 pandemic, which caused mass disruption to adolescent swimmers' daily routines. To measure how lockdown impacted nutritional practices in this cohort, three-day photograph food diaries were analysed at three time points: before (January), during (April), and after (September) the first UK lockdown. Thirteen swimmers (aged 15 ± 1 years) from a high-performance swimming club submitted satisfactory food diaries at all time points. During lockdown, lower amounts of energy (45.3 ± 9.8 vs. 31.1 ± 7.7 kcal∙kg BM∙day-1, p<0.001), carbohydrate (5.4 ± 1.2 vs. 3.5 ± 1.1 g∙kg BM∙day-1, p<0.001), protein (2.3 ± 0.4 vs. 1.7 ± 0.4 g∙kg BM∙day-1, p = 0.002), and fat (1.6 ± 0.4 vs. 1.1 ± 0.3 g∙kg BM∙day-1, p = 0.011) were reported. After lockdown, no nutritional differences were found in comparison compared to before lockdown (energy: 44.0 ± 12.1 kcal∙kg BM∙day-1; carbohydrate: 5.4 ± 1.4 g∙kg BM∙day-1; protein: 2.1 ± 0.6 g∙kg BM∙day-1; fat: 1.5 ± 0.6 g ∙kg BM∙day-1, all p>0.05), despite fewer training hours being completed (15.0 ± 1.4 vs. 19.1 ± 2.2 h∙week-1, p<0.001). These findings highlight the ability of adolescent swimmers to alter their nutrition based on their changing training circumstances when receiving sport nutrition support. However, some individuals displayed signs of suboptimal nutrition during lockdown that were not corrected once training resumed. This warrants future research to develop interactive education workshops that maintain focus and motivation towards optimal nutrition practices in isolated periods away from training.


COVID-19 , Adolescent , COVID-19/epidemiology , Carbohydrates , Communicable Disease Control , Eating , Humans , Pandemics
7.
Metabolites ; 11(8)2021 Aug 11.
Article En | MEDLINE | ID: mdl-34436476

Few data are available that describe how probiotics influence systemic metabolism during endurance exercise. Metabolomic profiling of endurance athletes will elucidate mechanisms by which probiotics may confer benefits to the athlete. In this study, twenty-four runners (20 male, 4 female) were block randomised into two groups using a double-blind matched-pairs design according to their most recent Marathon performance. Runners were assigned to 28-days of supplementation with a multi-strain probiotic (PRO) or a placebo (PLB). Following 28-days of supplementation, runners performed a competitive track Marathon race. Venous blood samples and muscle biopsies (vastus lateralis) were collected on the morning of the race and immediately post-race. Samples were subsequently analysed by untargeted 1H-NMR metabolomics. Principal component analysis (PCA) identified a greater difference in the post-Marathon serum metabolome in the PLB group vs. PRO. Univariate tests identified 17 non-overlapped metabolites in PLB, whereas only seven were identified in PRO. By building a PLS-DA model of two components, we revealed combinations of metabolites able to discriminate between PLB and PRO post-Marathon. PCA of muscle biopsies demonstrated no discernible difference post-Marathon between treatment groups. In conclusion, 28-days of probiotic supplementation alters the metabolic perturbations induced by a Marathon. Such findings may be related to maintaining the integrity of the gut during endurance exercise.

8.
Eur J Appl Physiol ; 121(12): 3283-3295, 2021 Dec.
Article En | MEDLINE | ID: mdl-34417881

As a nitric oxide (NO) enhancer, citrulline malate (CM) has recently been touted as a potential ergogenic aid to both resistance and high-intensity exercise performance, as well as the recovery of muscular performance. The mechanism has been associated with enhanced blood flow to active musculature, however, it might be more far-reaching as either ammonia homeostasis could be improved, or ATP production could be increased via greater availability of malate. Moreover, CM might improve muscle recovery via increased nutrient delivery and/or removal of waste products. To date, a single acute 8 g dose of CM on either resistance exercise performance or cycling has been the most common approach, which has produced equivocal results. This makes the effectiveness of CM to improve exercise performance difficult to determine. Reasons for the disparity in conclusions seem to be due to methodological discrepancies such as the testing protocols and the associated test-retest reliability, dosing strategy (i.e., amount and timing), and the recent discovery of quality control issues with some manufacturers stated (i.e., citrulline:malate ratios). Further exploration of the optimal dose is therefore required including quantification of the bioavailability of NO, citrulline, and malate following ingestion of a range of CM doses. Similarly, further well-controlled studies using highly repeatable exercise protocols with a large aerobic component are required to assess the mechanisms associated with this supplement appropriately. Until such studies are completed, the efficacy of CM supplementation to improve exercise performance remains ambiguous.


Athletic Performance , Citrulline/analogs & derivatives , Malates/pharmacology , Performance-Enhancing Substances/pharmacology , Citrulline/pharmacology , Dietary Supplements , Humans
9.
PLoS One ; 16(7): e0248456, 2021.
Article En | MEDLINE | ID: mdl-34197456

The timing of sodium bicarbonate (NaHCO3) supplementation has been suggested to be most optimal when coincided with a personal time that bicarbonate (HCO3-) or pH peaks in the blood following ingestion. However, the ergogenic mechanisms supporting this ingestion strategy are strongly contested. It is therefore plausible that NaHCO3 may be ergogenic by causing beneficial shifts in the strong ion difference (SID), though the time course of this blood acid base balance variable is yet to be investigated. Twelve highly trained, adolescent swimmers (age: 15.9 ± 1.0 years, body mass: 65.3 ± 9.6 kg) consumed their typical pre-competition nutrition 1-3 hours before ingesting 0.3 g∙kg BM-1 NaHCO3 in gelatine capsules. Capillary blood samples were then taken during seated rest on nine occasions (0, 60, 75, 90, 105, 120, 135, 150, 165 min post-ingestion) to identify the time course changes in HCO3-, pH, and the SID. No significant differences were found in the time to peak of each blood measure (HCO3-: 130 ± 35 min, pH: 120 ± 38 min, SID: 98 ± 37 min; p = 0.08); however, a large effect size was calculated between time to peak HCO3- and the SID (g = 0.88). Considering that a difference between time to peak blood HCO3- and the SID was identified in adolescents, future research should compare the ergogenic effects of these two individualized NaHCO3 ingestion strategies compared to a traditional, standardized approach.


Acid-Base Equilibrium/physiology , Athletes , Bicarbonates/blood , Sodium Bicarbonate/administration & dosage , Adolescent , Eructation/etiology , Female , Humans , Hydrogen-Ion Concentration , Male , Nausea/etiology , Performance-Enhancing Substances/administration & dosage , Performance-Enhancing Substances/adverse effects , Performance-Enhancing Substances/chemistry , Sodium Bicarbonate/adverse effects , Sodium Bicarbonate/chemistry , Swimming
10.
Front Nutr ; 8: 634465, 2021.
Article En | MEDLINE | ID: mdl-33681279

Introduction: Sodium bicarbonate (NaHCO3) is a well-established nutritional ergogenic aid that is typically ingested as a beverage or consumed in gelatine capsules. While capsules may delay the release of NaHCO3 and reduce gastrointestinal (GI) side effects compared with a beverage, it is currently unclear whether the capsule size may influence acid-base responses and GI symptoms following supplementation. Aim: This study aims to determine the effects of NaHCO3 supplementation, administered in capsules of different sizes, on acid-base responses, GI symptoms, and palatability. Methods: Ten healthy male subjects (mean ± SD: age 20 ± 2 years; height 1.80 ± 0.09 m; weight 78.0 ± 11.9 kg) underwent three testing sessions whereby 0.3 g NaHCO3/kg of body mass was consumed in either small (size 3), medium (size 0), or large (size 000) capsules. Capillary blood samples were procured pre-ingestion and every 10 min post-ingestion for 180 min. Blood samples were analyzed using a radiometer (Radiometer ABL800, Denmark) to determine blood bicarbonate concentration ([ HCO 3 - ]) and potential hydrogen (pH). GI symptoms were measured using a questionnaire at the same timepoints, whereas palatability was recorded pre-consumption. Results: Capsule size had a significant effect on lag time (the time [ HCO 3 - ] changed, T lag) and the timing of peak blood [ HCO 3 - ] (T max). Bicarbonate T lag was significantly higher in the large-sized (28 ± 4 min) compared with the small-sized (13 ± 2 min) capsules (P = 0.009). Similarly, T max was significantly lower in the small capsule (94 ± 24 min) compared with both the medium-sized (141 ± 27 min; P < 0.001) and the large-sized (121 ± 29 min; P < 0.001) capsules. The GI symptom scores were similar for small-sized (3 ± 3 AU), medium-sized (5 ± 3 AU), and large-sized (3 ± 3 AU) capsules, with no significant difference between symptom scores (F = 1.3, P = 0.310). Similarly, capsule size had no effect on palatability (F = 0.8, P = 0.409), with similar scores between different capsule sizes. Conclusion: Small capsule sizes led to quicker T lag and T max of blood [ HCO 3 - ] concentration compared to medium and large capsules, suggesting that individuals could supplement NaHCO3 in smaller capsules if they aim to increase extracellular buffering capacity more quickly.

11.
Int J Sport Nutr Exerc Metab ; 31(2): 125-134, 2021 03 01.
Article En | MEDLINE | ID: mdl-33477111

The remote food photography method, often referred to as "Snap-N-Send" by sport nutritionists, has been reported as a valid method to assess energy intake in athletic populations. However, preliminary studies were not conducted in true free-living conditions, and dietary assessment was performed by one researcher only. The authors, therefore, assessed the validity of Snap-N-Send to assess the energy and macronutrient composition in experienced (EXP, n = 23) and inexperienced (INEXP, n = 25) sport nutritionists. The participants analyzed 2 days of dietary photographs, comprising eight meals. Day 1 consisted of "simple" meals based around easily distinguishable foods (i.e., chicken breast and rice), and Day 2 consisted of "complex" meals, containing "hidden" ingredients (i.e., chicken curry). The estimates of dietary intake were analyzed for validity using one-sample t tests and typical error of estimates (TEE). The INEXP and EXP nutritionists underestimated energy intake for the simple day (mean difference [MD] = -1.5 MJ, TEE = 10.1%; -1.2 MJ, TEE = 9.3%, respectively) and the complex day (MD = -1.2 MJ, TEE = 17.8%; MD = -0.6 MJ, 14.3%, respectively). Carbohydrate intake was underestimated by INEXP (MD = -65.5 g/day, TEE = 10.8% and MD = -28.7 g/day, TEE = 24.4%) and EXP (MD = -53.4 g/day, TEE = 10.1% and -19.9 g/day, TEE = 17.5%) for both the simple and complex days, respectively. Interpractitioner reliability was generally "poor" for energy and macronutrients. The data demonstrate that the remote food photography method/Snap-N-Send underestimates energy intake in simple and complex meals, and these errors are evident in the EXP and INEXP sport nutritionists.


Diet Records , Nutrition Assessment , Photography , Sports Nutritional Physiological Phenomena , Cell Phone , Humans , Reproducibility of Results
12.
J Sci Med Sport ; 24(1): 92-97, 2021 Jan.
Article En | MEDLINE | ID: mdl-32660833

OBJECTIVES: This study aimed to investigate whether supplementation with 12 mg⋅day-1 astaxanthin for 7 days can improve exercise performance and metabolism during a 40 km cycling time trial. DESIGN: A randomised, double-blind, crossover design was employed. METHODS: Twelve recreationally trained male cyclists (VO2peak: 56.5 ± 5.5 mL⋅kg-1⋅min-1, Wmax: 346.8  ± 38.4 W) were recruited. Prior to each experimental trial, participants were supplemented with either 12 mg⋅day-1 astaxanthin or an appearance-matched placebo for 7 days (separated by 14 days of washout). On day 7 of supplementation, participants completed a 40 km cycling time trial on a cycle ergometer, with indices of exercise metabolism measured throughout. RESULTS: Time to complete the 40 km cycling time trial was improved by 1.2 ± 1.7% following astaxanthin supplementation, from 70.76 ± 3.93 min in the placebo condition to 69.90 ± 3.78 min in the astaxanthin condition (mean improvement = 51 ± 71 s, p = 0.029, g = 0.21). Whole-body fat oxidation rates were also greater (+0.09 ± 0.13 g⋅min-1, p = 0.044, g = 0.52), and the respiratory exchange ratio lower (-0.03 ± 0.04, p = 0.024, g = 0.60) between 39-40 km in the astaxanthin condition. CONCLUSIONS: Supplementation with 12 mg⋅day-1 astaxanthin for 7 days provided an ergogenic benefit to 40 km cycling time trial performance in recreationally trained male cyclists and enhanced whole-body fat oxidation rates in the final stages of this endurance-type performance event.


Adipose Tissue/metabolism , Bicycling/physiology , Fibrinolytic Agents/pharmacology , Performance-Enhancing Substances/pharmacology , Adult , Confidence Intervals , Cross-Over Studies , Double-Blind Method , Fibrinolytic Agents/administration & dosage , Humans , Male , Oxidation-Reduction/drug effects , Performance-Enhancing Substances/administration & dosage , Recreation , Sports Nutritional Physiological Phenomena/drug effects , Time Factors , Xanthophylls/administration & dosage , Xanthophylls/pharmacology
13.
Front Nutr ; 7: 154, 2020.
Article En | MEDLINE | ID: mdl-33015125

This study investigated the effects of two sodium bicarbonate (NaHCO3) doses on estimated energy system contribution and performance during an intermittent high-intensity cycling test (HICT), and time-to-exhaustion (TTE) exercise. Twelve healthy males (stature: 1.75 ± 0.08 m; body mass: 67.5 ± 6.3 kg; age: 21.0 ± 1.4 years; maximal oxygen consumption: 45.1 ± 7.0 ml.kg.min-1) attended four separate laboratory visits. Maximal aerobic power (MAP) was identified from an incremental exercise test. During the three experimental visits, participants ingested either 0.2 g.kg-1 BM NaHCO3 (SBC2), 0.3 g.kg-1 BM NaHCO3 (SBC3), or 0.07 g.kg-1 BM sodium chloride (placebo; PLA) at 60 min pre-exercise. The HICT involved 3 × 60 s cycling bouts (90, 95, 100% MAP) interspersed with 90 s recovery, followed by TTE cycling at 105% MAP. Blood lactate was measured after each cycling bout to calculate estimates for glycolytic contribution to exercise. Gastrointestinal (GI) upset was quantified at baseline, 30 and 60 min post-ingestion, and 5 min post-exercise. Cycling TTE increased for SBC2 (+20.2 s; p = 0.045) and SBC3 (+31.9 s; p = 0.004) compared to PLA. Glycolytic contribution increased, albeit non-significantly, during the TTE protocol for SBC2 (+7.77 kJ; p = 0.10) and SBC3 (+7.95 kJ; p = 0.07) compared to PLA. GI upset was exacerbated post-exercise after SBC3 for nausea compared to SBC2 and PLA (p < 0.05), whilst SBC2 was not significantly different to PLA for any symptom (p > 0.05). Both NaHCO3 doses enhanced cycling performance and glycolytic contribution, however, higher doses may maximize ergogenic benefits.

14.
Int J Sport Nutr Exerc Metab ; 30(5): 315-322, 2020 09 01.
Article En | MEDLINE | ID: mdl-32732454

Rugby is characterized by frequent high-intensity collisions, resulting in muscle soreness. Players consequently seek strategies to reduce soreness and accelerate recovery, with an emerging method being cannabidiol (CBD), despite anti-doping risks. The prevalence and rationale for CBD use in rugby has not been explored; therefore, we recruited professional male players to complete a survey on CBD. Goodness of fit chi-square (χ2) was used to assess CBD use between codes and player position. Effects of age on use were determined using χ2 tests of independence. Twenty-five teams provided 517 player responses. While the majority of players had never used CBD (p < .001, V = 0.24), 26% had either used it (18%) or were still using it (8%). Significantly more CBD use was observed in rugby union compared with rugby league (p = .004, V = 0.13), but player position was not a factor (p = .760, V = 0.013). CBD use increased with players' age (p < .001, V = 0.28), with mean use reaching 41% in the players aged 28 years and older category (p < .0001). The players using CBD primarily used the Internet (73%) or another teammate (61%) to obtain information, with only 16% consulting a nutritionist. The main reasons for CBD use were improving recovery/pain (80%) and sleep (78%), with 68% of players reporting a perceived benefit. These data highlight the need for immediate education on the risks of CBD, as well as the need to explore the claims regarding pain and sleep.


Analgesics/therapeutic use , Cannabidiol/therapeutic use , Football/injuries , Myalgia/therapy , Adolescent , Adult , Doping in Sports , Health Knowledge, Attitudes, Practice , Humans , Male , Recovery of Function/drug effects , Sleep/drug effects , Sleep Aids, Pharmaceutical/therapeutic use , Young Adult
15.
Eur J Appl Physiol ; 120(7): 1563-1573, 2020 Jul.
Article En | MEDLINE | ID: mdl-32388584

PURPOSE: Enteric-coated sodium bicarbonate (NaHCO3) can attenuate gastrointestinal (GI) symptoms following acute bicarbonate loading, although the subsequent effects on exercise performance have not been investigated. The purpose of this study was to examine the effects of enteric-coated NaHCO3 supplementation on high-intensity exercise performance and GI symptoms. METHODS: Eleven trained male cyclists completed three 4 km time trials after consuming; a placebo or 0.3 g∙kg-1 body mass NaHCO3 in enteric-coated or gelatin capsules. Exercise trials were timed with individual peak blood bicarbonate ion concentration ([HCO3-]). Blood acid-base balance was measured pre-ingestion, pre-exercise, and post-exercise, whereas GI symptoms were recorded pre-ingestion and immediately pre-exercise. RESULTS: Pre-exercise blood [HCO3-] and potential hydrogen (pH) were greater for both NaHCO3 conditions (P < 0.0005) when compared to placebo. Performance time was faster with enteric-coated (- 8.5 ± 9.6 s, P = 0.044) and gelatin (- 9.6 ± 7.2 s, P = 0.004) NaHCO3 compared to placebo, with no significant difference between conditions (mean difference = 1.1 ± 5.3 s, P = 1.000). Physiological responses were similar between conditions, although blood lactate ion concentration was higher with gelatin NaHCO3 (2.4 ± 1.7 mmol∙L-1, P = 0.003) compared with placebo. Furthermore, fewer participants experienced GI symptoms with enteric-coated (n = 3) compared to gelatin (n = 7) NaHCO3. DISCUSSION: Acute enteric-coated NaHCO3 consumption mitigates GI symptoms at the onset of exercise and improves subsequent 4 km cycling TT performance. Athletes who experience GI side-effects after acute bicarbonate loading may, therefore, benefit from enteric-coated NaHCO3 supplementation prior to exercise performance.


Athletic Performance/physiology , Bicycling/physiology , Dietary Supplements , Sodium Bicarbonate/pharmacology , Acid-Base Equilibrium/drug effects , Adult , Athletes , Bicarbonates/blood , Exercise/physiology , Humans , Lactic Acid/blood , Male
16.
Int J Sport Nutr Exerc Metab ; 30(1): 62-68, 2020 Jan 01.
Article En | MEDLINE | ID: mdl-31751936

Enteric-formulated capsules can mitigate gastrointestinal (GI) side effects following sodium bicarbonate (NaHCO3) ingestion; however, it remains unclear how encapsulation alters postingestion symptoms and acid-base balance. The current study aimed to identify the optimal ingestion form to mitigate GI distress following NaHCO3 ingestion. Trained males (n = 14) ingested 300 mg/kg body mass of NaHCO3 in gelatin (GEL), delayed-release (DEL), and enteric-coated (ENT) capsules or a placebo in a randomized cross-over design. Blood bicarbonate anion concentration, potential hydrogen, and GI symptoms were measured pre- and postingestion for 3 hr. Fewer GI symptoms were reported with ENT NaHCO3 than with GEL (p = .012), but not with DEL (p = .106) in the postingestion phase. Symptom severity decreased with DEL (4.6 ± 2.8 arbitrary units) compared with GEL (7.0 ± 2.6 arbitrary units; p = .001) and was lower with ENT (2.8 ± 1.9 arbitrary units) compared with both GEL (p < .0005) and DEL (p = .044) NaHCO3. Blood bicarbonate anion concentration increased in all NaHCO3 conditions compared with the placebo (p < .0005), although this was lower with ENT than with GEL (p = .001) and DEL (p < .0005) NaHCO3. Changes in blood potential hydrogen were reduced with ENT compared with GEL (p = .047) and DEL (p = .047) NaHCO3, with no other differences between the conditions. Ingestion of ENT NaHCO3 attenuates GI disturbances for up to 3 hr postingestion. Therefore, ENT ingestion forms may be favorable for those who report GI disturbances with NaHCO3 supplementation or for those who have previously been deterred from its use altogether.


Gastrointestinal Diseases/prevention & control , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/adverse effects , Acid-Base Equilibrium , Adult , Biological Availability , Cross-Over Studies , Double-Blind Method , Humans , Hydrogen-Ion Concentration , Male , Sodium Bicarbonate/blood , Sodium Bicarbonate/pharmacokinetics , Tablets, Enteric-Coated , Young Adult
17.
J Int Soc Sports Nutr ; 16(1): 50, 2019 Nov 07.
Article En | MEDLINE | ID: mdl-31699159

Background In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon. Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~ 60% of energy intake, 5-8 g·kg- 1·d- 1) to mitigate the negative effects of chronic, training-induced glycogen depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach may compromise performance during high-intensity efforts; v) Protein intakes of ~ 1.6 g·kg- 1·d- 1 are necessary to maintain lean mass and support recovery from training, but amounts up to 2.5 g.kg- 1·d- 1 may be warranted during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate caloric deficits, runners should aim to consume 150-400 Kcal·h- 1 (carbohydrate, 30-50 g·h- 1; protein, 5-10 g·h- 1) from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the increased preference for savory foods in longer races; vii) Fluid volumes of 450-750 mL·h- 1 (~ 150-250 mL every 20 min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium) may be needed in concentrations greater than that provided by most commercial products (i.e., > 575 mg·L- 1 sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii) Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide, monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of racing, particularly when sleep deprivation may compromise athlete safety.


Dietary Carbohydrates/administration & dosage , Energy Intake , Nutritional Requirements , Running/physiology , Sports Nutritional Physiological Phenomena , Athletes , Athletic Performance , Competitive Behavior , Dietary Proteins/administration & dosage , Humans , Physical Endurance , Running/classification , Societies
18.
Front Nutr ; 6: 155, 2019.
Article En | MEDLINE | ID: mdl-31632978

The aim of this study was to assess the effects of post-exercise sodium bicarbonate (NaHCO3) ingestion (0.3 g.kg-1 body mass) on the recovery of acid-base balance (pH, HCO 3 - , and the SID) and subsequent exercise performance in elite boxers. Seven elite male professional boxers performed an initial bout of exhaustive exercise comprising of a boxing specific high-intensity interval running (HIIR) protocol, followed by a high-intensity run to volitional exhaustion (TLIM1). A 75 min passive recovery then ensued, whereby after 10 min recovery, participants ingested either 0.3 g.kg-1 body mass NaHCO3, or 0.1 g.kg-1 body mass sodium chloride (PLA). Solutions were taste matched and administered double-blind. Participants then completed a boxing specific punch combination protocol, followed by a second high-intensity run to volitional exhaustion (TLIM2). Both initial bouts of TLIM1 were well matched between PLA and NaHCO3 (ICC; r = 0.94, p = 0.002). The change in performance from TLIM1 to TLIM2 was greater following NaHCO3 compared to PLA (+164 ± 90 vs. +73 ± 78 sec; p = 0.02, CI = 45.1, 428.8, g = 1.0). Following ingestion of NaHCO3, pH was greater prior to TLIM2 by 0.11 ± 0.02 units (1.4%) (p < 0.001, CI = 0.09, 0.13, g = 3.4), whilst HCO 3 - was greater by 8.8 ± 1.5 mmol.l-1 (26.3%) compared to PLA (p < 0.001, CI = 7.3, 10.2, g = 5.1). The current study suggests that these significant increases in acid base balance during post-exercise recovery facilitated the improvement in the subsequent bout of exercise. Future research should continue to explore the role of NaHCO3 supplementation as a recovery aid in boxing and other combat sports.

19.
J Sports Sci ; 37(13): 1464-1471, 2019 Jul.
Article En | MEDLINE | ID: mdl-30668281

This study investigated the effects of two separate doses of sodium bicarbonate (NaHCO3) on 4 km time trial (TT) cycling performance and post-exercise acid base balance recovery in hypoxia. Fourteen club-level cyclists completed four cycling TT's, followed by a 40 min passive recovery in normobaric hypoxic conditions (FiO2 = 14.5%) following one of either: two doses of NaHCO3 (0.2 g.kg-1 BM; SBC2, or 0.3 g.kg-1 BM; SBC3), a taste-matched placebo (0.07 g.kg-1 BM sodium chloride; PLA), or a control trial in a double-blind, randomized, repeated-measures and crossover design study. Compared to PLA, TT performance was improved following SBC2 (p = 0.04, g = 0.16, very likely beneficial), but was improved to a greater extent following SBC3 (p = 0.01, g = 0.24, very likely beneficial). Furthermore, a likely benefit of ingesting SBC3 over SBC2 was observed (p = 0.13, g = 0.10), although there was a large inter-individual variation. Both SBC treatments achieved full recovery within 40 min, which was not observed in either PLA or CON following the TT. In conclusion, NaHCO3 improves 4 km TT performance and acid base balance recovery in acute moderate hypoxic conditions, however the optimal dose warrants an individual approach.


Acid-Base Equilibrium/drug effects , Athletic Performance/physiology , Bicycling/physiology , Performance-Enhancing Substances/administration & dosage , Sodium Bicarbonate/administration & dosage , Adolescent , Adult , Cross-Over Studies , Double-Blind Method , Female , Gastrointestinal Diseases/chemically induced , Heart Rate , Humans , Hydrogen-Ion Concentration , Hypoxia , Male , Oxygen/blood , Perception , Performance-Enhancing Substances/adverse effects , Performance-Enhancing Substances/blood , Physical Exertion , Sodium Bicarbonate/adverse effects , Sodium Bicarbonate/blood , Young Adult
20.
Sports Med Open ; 5(1): 4, 2019 Jan 24.
Article En | MEDLINE | ID: mdl-30680463

BACKGROUND: Sodium bicarbonate (NaHCO3) is a well-established nutritional ergogenic aid, though gastrointestinal (GI) distress is a common side-effect. Delayed-release NaHCO3 may alleviate GI symptoms and enhance bicarbonate bioavailability following oral ingestion, although this has yet to be confirmed. METHODS: In a randomised crossover design, pharmacokinetic responses and acid-base status were compared following two forms of NaHCO3, as were GI symptoms. Twelve trained healthy males (mean ± SD age 25.8 ± 4.5 years, maximal oxygen uptake ([Formula: see text]) 58.9 ± 10.9 mL kg min-1, height 1.8 ± 0.1 m, body mass 82.3 ± 11.1 kg, fat-free mass 72.3 ± 10.0 kg) underwent a control (CON) condition and two experimental conditions: 300 mg kg-1 body mass NaHCO3 ingested as an aqueous solution (SOL) and encased in delayed-release capsules (CAP). Blood bicarbonate concentration, pH and base excess (BE) were measured in all conditions over 180 min, as were subjective GI symptom scores. RESULTS: Incidences of GI symptoms and overall severity were significantly lower (mean difference = 45.1%, P < 0.0005 and 47.5%, P < 0.0005 for incidences and severity, respectively) with the CAP than with the SOL. Symptoms displayed increases at 40 to 80 min post-ingestion with the SOL that were negated with CAP (P < 0.05). Time to reach peak bicarbonate concentration, pH and BE were significantly longer with CAP than with the SOL. CONCLUSIONS: In summary, CAP can mitigate GI symptoms induced with SOL and should be ingested earlier to induce similar acid-base changes. Furthermore, CAP may be more ergogenic in those who experience severe GI distress with SOL, although this warrants further investigation.

...